/* * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. * * @APPLE_LICENSE_HEADER_START@ * * Portions Copyright (c) 1999 Apple Computer, Inc. All Rights * Reserved. This file contains Original Code and/or Modifications of * Original Code as defined in and that are subject to the Apple Public * Source License Version 1.1 (the "License"). You may not use this file * except in compliance with the License. Please obtain a copy of the * License at http://www.apple.com/publicsource and read it before using * this file. * * The Original Code and all software distributed under the License are * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE OR NON- INFRINGEMENT. Please see the * License for the specific language governing rights and limitations * under the License. * * @APPLE_LICENSE_HEADER_END@ */ /* parser.c source line parser for the Netwide Assembler * * The Netwide Assembler is copyright (C) 1996 Simon Tatham and * Julian Hall. All rights reserved. The software is * redistributable under the licence given in the file "Licence" * distributed in the NASM archive. * * initial version 27/iii/95 by Simon Tatham */ #include #include #include #include #include #include "nasm.h" #include "nasmlib.h" #include "parser.h" #include "float.h" static long reg_flags[] = { /* sizes and special flags */ 0, REG8, REG_AL, REG_AX, REG8, REG8, REG16, REG16, REG8, REG_CL, REG_CREG, REG_CREG, REG_CREG, REG_CR4, REG_CS, REG_CX, REG8, REG16, REG8, REG_DREG, REG_DREG, REG_DREG, REG_DREG, REG_DREG, REG_DREG, REG_DESS, REG_DX, REG_EAX, REG32, REG32, REG_ECX, REG32, REG32, REG_DESS, REG32, REG32, REG_FSGS, REG_FSGS, MMXREG, MMXREG, MMXREG, MMXREG, MMXREG, MMXREG, MMXREG, MMXREG, REG16, REG16, REG_DESS, FPU0, FPUREG, FPUREG, FPUREG, FPUREG, FPUREG, FPUREG, FPUREG, REG_TREG, REG_TREG, REG_TREG, REG_TREG, REG_TREG }; enum { /* special tokens */ S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT, S_QWORD, S_SHORT, S_TO, S_TWORD, S_WORD }; static int is_comma_next (void); static int i; static struct tokenval tokval; static efunc error; insn *parse_line (int pass, char *buffer, insn *result, efunc errfunc, evalfunc evaluate, evalinfofunc einfo) { int operand; int critical; struct eval_hints hints; result->forw_ref = FALSE; error = errfunc; einfo ("", 0L, 0L); stdscan_reset(); stdscan_bufptr = buffer; i = stdscan(NULL, &tokval); result->eops = NULL; /* must do this, whatever happens */ result->operands = 0; /* must initialise this */ if (i==0) { /* blank line - ignore */ result->label = NULL; /* so, no label on it */ result->opcode = -1; /* and no instruction either */ return result; } if (i != TOKEN_ID && i != TOKEN_INSN && i != TOKEN_PREFIX && (i!=TOKEN_REG || (REG_SREG & ~reg_flags[tokval.t_integer]))) { error (ERR_NONFATAL, "label or instruction expected" " at start of line"); result->label = NULL; result->opcode = -1; return result; } if (i == TOKEN_ID) { /* there's a label here */ result->label = tokval.t_charptr; einfo (result->label, 0L, 0L); i = stdscan(NULL, &tokval); if (i == ':') { /* skip over the optional colon */ i = stdscan(NULL, &tokval); } else if (i == 0 && pass == 1) { error (ERR_WARNING|ERR_WARN_OL, "label alone on a line without a colon might be in error"); } } else /* no label; so, moving swiftly on */ result->label = NULL; if (i==0) { result->opcode = -1; /* this line contains just a label */ return result; } result->nprefix = 0; result->times = 1L; while (i == TOKEN_PREFIX || (i==TOKEN_REG && !(REG_SREG & ~reg_flags[tokval.t_integer]))) { /* * Handle special case: the TIMES prefix. */ if (i == TOKEN_PREFIX && tokval.t_integer == P_TIMES) { expr *value; i = stdscan(NULL, &tokval); value = evaluate (stdscan, NULL, &tokval, NULL, pass, error, NULL); i = tokval.t_type; if (!value) { /* but, error in evaluator */ result->opcode = -1; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } if (!is_simple (value)) { error (ERR_NONFATAL, "non-constant argument supplied to TIMES"); result->times = 1L; } else { result->times = value->value; if (value->value < 0) error(ERR_NONFATAL, "TIMES value %d is negative", value->value); } } else { if (result->nprefix == MAXPREFIX) error (ERR_NONFATAL, "instruction has more than %d prefixes", MAXPREFIX); else result->prefixes[result->nprefix++] = tokval.t_integer; i = stdscan(NULL, &tokval); } } if (i != TOKEN_INSN) { if (result->nprefix > 0 && i == 0) { /* * Instruction prefixes are present, but no actual * instruction. This is allowed: at this point we * invent a notional instruction of RESB 0. */ result->opcode = I_RESB; result->operands = 1; result->oprs[0].type = IMMEDIATE; result->oprs[0].offset = 0L; result->oprs[0].segment = result->oprs[0].wrt = NO_SEG; return result; } else { error (ERR_NONFATAL, "parser: instruction expected"); result->opcode = -1; return result; } } result->opcode = tokval.t_integer; result->condition = tokval.t_inttwo; /* * RESB, RESW and RESD cannot be satisfied with incorrectly * evaluated operands, since the correct values _must_ be known * on the first pass. Hence, even in pass one, we set the * `critical' flag on calling evaluate(), so that it will bomb * out on undefined symbols. Nasty, but there's nothing we can * do about it. * * For the moment, EQU has the same difficulty, so we'll * include that. */ if (result->opcode == I_RESB || result->opcode == I_RESW || result->opcode == I_RESD || result->opcode == I_RESQ || result->opcode == I_REST || result->opcode == I_EQU) critical = pass; else critical = (pass==2 ? 2 : 0); if (result->opcode == I_DB || result->opcode == I_DW || result->opcode == I_DD || result->opcode == I_DQ || result->opcode == I_DT || result->opcode == I_INCBIN) { extop *eop, **tail = &result->eops, **fixptr; int oper_num = 0; /* * Begin to read the DB/DW/DD/DQ/DT operands. */ while (1) { i = stdscan(NULL, &tokval); if (i == 0) break; fixptr = tail; eop = *tail = nasm_malloc(sizeof(extop)); tail = &eop->next; eop->next = NULL; eop->type = EOT_NOTHING; oper_num++; if (i == TOKEN_NUM && tokval.t_charptr && is_comma_next()) { eop->type = EOT_DB_STRING; eop->stringval = tokval.t_charptr; eop->stringlen = tokval.t_inttwo; i = stdscan(NULL, &tokval); /* eat the comma */ continue; } if (i == TOKEN_FLOAT || i == '-') { long sign = +1L; if (i == '-') { char *save = stdscan_bufptr; i = stdscan(NULL, &tokval); sign = -1L; if (i != TOKEN_FLOAT) { stdscan_bufptr = save; i = tokval.t_type = '-'; } } if (i == TOKEN_FLOAT) { eop->type = EOT_DB_STRING; if (result->opcode == I_DD) eop->stringlen = 4; else if (result->opcode == I_DQ) eop->stringlen = 8; else if (result->opcode == I_DT) eop->stringlen = 10; else { error(ERR_NONFATAL, "floating-point constant" " encountered in `D%c' instruction", result->opcode == I_DW ? 'W' : 'B'); eop->type = EOT_NOTHING; } eop = nasm_realloc(eop, sizeof(extop)+eop->stringlen); tail = &eop->next; *fixptr = eop; eop->stringval = (char *)eop + sizeof(extop); if (!float_const (tokval.t_charptr, sign, (unsigned char *)eop->stringval, eop->stringlen, error)) eop->type = EOT_NOTHING; i = stdscan(NULL, &tokval); /* eat the comma */ continue; } } /* anything else */ { expr *value; value = evaluate (stdscan, NULL, &tokval, NULL, critical, error, NULL); i = tokval.t_type; if (!value) { /* error in evaluator */ result->opcode = -1;/* unrecoverable parse error: */ return result; /* ignore this instruction */ } if (is_unknown(value)) { eop->type = EOT_DB_NUMBER; eop->offset = 0; /* doesn't matter what we put */ eop->segment = eop->wrt = NO_SEG; /* likewise */ } else if (is_reloc(value)) { eop->type = EOT_DB_NUMBER; eop->offset = reloc_value(value); eop->segment = reloc_seg(value); eop->wrt = reloc_wrt(value); } else { error (ERR_NONFATAL, "operand %d: expression is not simple" " or relocatable", oper_num); } } /* * We're about to call stdscan(), which will eat the * comma that we're currently sitting on between * arguments. However, we'd better check first that it * _is_ a comma. */ if (i == 0) /* also could be EOL */ break; if (i != ',') { error (ERR_NONFATAL, "comma expected after operand %d", oper_num); result->opcode = -1;/* unrecoverable parse error: */ return result; /* ignore this instruction */ } } if (result->opcode == I_INCBIN) { /* * Correct syntax for INCBIN is that there should be * one string operand, followed by one or two numeric * operands. */ if (!result->eops || result->eops->type != EOT_DB_STRING) error (ERR_NONFATAL, "`incbin' expects a file name"); else if (result->eops->next && result->eops->next->type != EOT_DB_NUMBER) error (ERR_NONFATAL, "`incbin': second parameter is", " non-numeric"); else if (result->eops->next && result->eops->next->next && result->eops->next->next->type != EOT_DB_NUMBER) error (ERR_NONFATAL, "`incbin': third parameter is", " non-numeric"); else if (result->eops->next && result->eops->next->next && result->eops->next->next->next) error (ERR_NONFATAL, "`incbin': more than three parameters"); else return result; /* * If we reach here, one of the above errors happened. * Throw the instruction away. */ result->opcode = -1; return result; } return result; } /* right. Now we begin to parse the operands. There may be up to three * of these, separated by commas, and terminated by a zero token. */ for (operand = 0; operand < 3; operand++) { expr *value; /* used most of the time */ int mref; /* is this going to be a memory ref? */ int bracket; /* is it a [] mref, or a & mref? */ result->oprs[operand].addr_size = 0;/* have to zero this whatever */ result->oprs[operand].eaflags = 0; /* and this */ i = stdscan(NULL, &tokval); if (i == 0) break; /* end of operands: get out of here */ result->oprs[operand].type = 0; /* so far, no override */ while (i == TOKEN_SPECIAL) {/* size specifiers */ switch ((int)tokval.t_integer) { case S_BYTE: result->oprs[operand].type |= BITS8; break; case S_WORD: result->oprs[operand].type |= BITS16; break; case S_DWORD: case S_LONG: result->oprs[operand].type |= BITS32; break; case S_QWORD: result->oprs[operand].type |= BITS64; break; case S_TWORD: result->oprs[operand].type |= BITS80; break; case S_TO: result->oprs[operand].type |= TO; break; case S_FAR: result->oprs[operand].type |= FAR; break; case S_NEAR: result->oprs[operand].type |= NEAR; break; case S_SHORT: result->oprs[operand].type |= SHORT; break; } i = stdscan(NULL, &tokval); } if (i == '[' || i == '&') { /* memory reference */ mref = TRUE; bracket = (i == '['); i = stdscan(NULL, &tokval); if (i == TOKEN_SPECIAL) { /* check for address size override */ switch ((int)tokval.t_integer) { case S_NOSPLIT: result->oprs[operand].eaflags |= EAF_TIMESTWO; break; case S_BYTE: result->oprs[operand].eaflags |= EAF_BYTEOFFS; break; case S_WORD: result->oprs[operand].addr_size = 16; result->oprs[operand].eaflags |= EAF_WORDOFFS; break; case S_DWORD: case S_LONG: result->oprs[operand].addr_size = 32; result->oprs[operand].eaflags |= EAF_WORDOFFS; break; default: error (ERR_NONFATAL, "invalid size specification in" " effective address"); } i = stdscan(NULL, &tokval); } } else { /* immediate operand, or register */ mref = FALSE; bracket = FALSE; /* placate optimisers */ } value = evaluate (stdscan, NULL, &tokval, &result->forw_ref, critical, error, &hints); i = tokval.t_type; if (!value) { /* error in evaluator */ result->opcode = -1; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } if (i == ':' && mref) { /* it was seg:offset */ /* * Process the segment override. */ if (value[1].type!=0 || value->value!=1 || REG_SREG & ~reg_flags[value->type]) error (ERR_NONFATAL, "invalid segment override"); else if (result->nprefix == MAXPREFIX) error (ERR_NONFATAL, "instruction has more than %d prefixes", MAXPREFIX); else result->prefixes[result->nprefix++] = value->type; i = stdscan(NULL, &tokval); /* then skip the colon */ if (i == TOKEN_SPECIAL) { /* another check for size override */ switch ((int)tokval.t_integer) { case S_WORD: result->oprs[operand].addr_size = 16; break; case S_DWORD: case S_LONG: result->oprs[operand].addr_size = 32; break; default: error (ERR_NONFATAL, "invalid size specification in" " effective address"); } i = stdscan(NULL, &tokval); } value = evaluate (stdscan, NULL, &tokval, &result->forw_ref, critical, error, &hints); i = tokval.t_type; /* and get the offset */ if (!value) { /* but, error in evaluator */ result->opcode = -1; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } } if (mref && bracket) { /* find ] at the end */ if (i != ']') { error (ERR_NONFATAL, "parser: expecting ]"); do { /* error recovery again */ i = stdscan(NULL, &tokval); } while (i != 0 && i != ','); } else /* we got the required ] */ i = stdscan(NULL, &tokval); } else { /* immediate operand */ if (i != 0 && i != ',' && i != ':') { error (ERR_NONFATAL, "comma or end of line expected"); do { /* error recovery */ i = stdscan(NULL, &tokval); } while (i != 0 && i != ','); } else if (i == ':') { result->oprs[operand].type |= COLON; } } /* now convert the exprs returned from evaluate() into operand * descriptions... */ if (mref) { /* it's a memory reference */ expr *e = value; int b, i, s; /* basereg, indexreg, scale */ long o; /* offset */ b = i = -1, o = s = 0; result->oprs[operand].hintbase = hints.base; result->oprs[operand].hinttype = hints.type; if (e->type <= EXPR_REG_END) { /* this bit's a register */ if (e->value == 1) /* in fact it can be basereg */ b = e->type; else /* no, it has to be indexreg */ i = e->type, s = e->value; e++; } if (e->type && e->type <= EXPR_REG_END) {/* it's a 2nd register */ if (e->value != 1) { /* it has to be indexreg */ if (i != -1) { /* but it can't be */ error(ERR_NONFATAL, "invalid effective address"); result->opcode = -1; return result; } else i = e->type, s = e->value; } else { /* it can be basereg */ if (b != -1) /* or can it? */ i = e->type, s = 1; else b = e->type; } e++; } if (e->type != 0) { /* is there an offset? */ if (e->type <= EXPR_REG_END) {/* in fact, is there an error? */ error (ERR_NONFATAL, "invalid effective address"); result->opcode = -1; return result; } else { if (e->type == EXPR_UNKNOWN) { o = 0; /* doesn't matter what */ result->oprs[operand].wrt = NO_SEG; /* nor this */ result->oprs[operand].segment = NO_SEG; /* or this */ while (e->type) e++; /* go to the end of the line */ } else { if (e->type == EXPR_SIMPLE) { o = e->value; e++; } if (e->type == EXPR_WRT) { result->oprs[operand].wrt = e->value; e++; } else result->oprs[operand].wrt = NO_SEG; /* * Look for a segment base type. */ if (e->type && e->type < EXPR_SEGBASE) { error (ERR_NONFATAL, "invalid effective address"); result->opcode = -1; return result; } while (e->type && e->value == 0) e++; if (e->type && e->value != 1) { error (ERR_NONFATAL, "invalid effective address"); result->opcode = -1; return result; } if (e->type) { result->oprs[operand].segment = e->type - EXPR_SEGBASE; e++; } else result->oprs[operand].segment = NO_SEG; while (e->type && e->value == 0) e++; if (e->type) { error (ERR_NONFATAL, "invalid effective address"); result->opcode = -1; return result; } } } } else { o = 0; result->oprs[operand].wrt = NO_SEG; result->oprs[operand].segment = NO_SEG; } if (e->type != 0) { /* there'd better be nothing left! */ error (ERR_NONFATAL, "invalid effective address"); result->opcode = -1; return result; } result->oprs[operand].type |= MEMORY; if (b==-1 && (i==-1 || s==0)) result->oprs[operand].type |= MEM_OFFS; result->oprs[operand].basereg = b; result->oprs[operand].indexreg = i; result->oprs[operand].scale = s; result->oprs[operand].offset = o; } else { /* it's not a memory reference */ if (is_just_unknown(value)) { /* it's immediate but unknown */ result->oprs[operand].type |= IMMEDIATE; result->oprs[operand].offset = 0; /* don't care */ result->oprs[operand].segment = NO_SEG; /* don't care again */ result->oprs[operand].wrt = NO_SEG;/* still don't care */ } else if (is_reloc(value)) { /* it's immediate */ result->oprs[operand].type |= IMMEDIATE; result->oprs[operand].offset = reloc_value(value); result->oprs[operand].segment = reloc_seg(value); result->oprs[operand].wrt = reloc_wrt(value); if (is_simple(value) && reloc_value(value)==1) result->oprs[operand].type |= UNITY; } else { /* it's a register */ if (value->type>=EXPR_SIMPLE || value->value!=1) { error (ERR_NONFATAL, "invalid operand type"); result->opcode = -1; return result; } /* clear overrides, except TO which applies to FPU regs */ result->oprs[operand].type &= TO; result->oprs[operand].type |= REGISTER; result->oprs[operand].type |= reg_flags[value->type]; result->oprs[operand].basereg = value->type; } } } result->operands = operand; /* set operand count */ while (operand<3) /* clear remaining operands */ result->oprs[operand++].type = 0; /* * Transform RESW, RESD, RESQ, REST into RESB. */ switch (result->opcode) { case I_RESW: result->opcode=I_RESB; result->oprs[0].offset*=2; break; case I_RESD: result->opcode=I_RESB; result->oprs[0].offset*=4; break; case I_RESQ: result->opcode=I_RESB; result->oprs[0].offset*=8; break; case I_REST: result->opcode=I_RESB; result->oprs[0].offset*=10; break; } return result; } static int is_comma_next (void) { char *p; int i; struct tokenval tv; p = stdscan_bufptr; i = stdscan (NULL, &tv); stdscan_bufptr = p; return (i == ',' || i == ';' || !i); } void cleanup_insn (insn *i) { extop *e; while (i->eops) { e = i->eops; i->eops = i->eops->next; nasm_free (e); } }