/* * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. * * @APPLE_LICENSE_HEADER_START@ * * Portions Copyright (c) 1999 Apple Computer, Inc. All Rights * Reserved. This file contains Original Code and/or Modifications of * Original Code as defined in and that are subject to the Apple Public * Source License Version 1.1 (the "License"). You may not use this file * except in compliance with the License. Please obtain a copy of the * License at http://www.apple.com/publicsource and read it before using * this file. * * The Original Code and all software distributed under the License are * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE OR NON- INFRINGEMENT. Please see the * License for the specific language governing rights and limitations * under the License. * * @APPLE_LICENSE_HEADER_END@ */ /* nasmlib.c library routines for the Netwide Assembler * * The Netwide Assembler is copyright (C) 1996 Simon Tatham and * Julian Hall. All rights reserved. The software is * redistributable under the licence given in the file "Licence" * distributed in the NASM archive. */ #include #include #include #include #include "nasm.h" #include "nasmlib.h" static efunc nasm_malloc_error; #ifdef LOGALLOC static FILE *logfp; #endif void nasm_set_malloc_error (efunc error) { nasm_malloc_error = error; #ifdef LOGALLOC logfp = fopen ("malloc.log", "w"); setvbuf (logfp, NULL, _IOLBF, BUFSIZ); fprintf (logfp, "null pointer is %p\n", NULL); #endif } #ifdef LOGALLOC void *nasm_malloc_log (char *file, int line, size_t size) #else void *nasm_malloc (size_t size) #endif { void *p = malloc(size); if (!p) nasm_malloc_error (ERR_FATAL | ERR_NOFILE, "out of memory"); #ifdef LOGALLOC else fprintf(logfp, "%s %d malloc(%ld) returns %p\n", file, line, (long)size, p); #endif return p; } #ifdef LOGALLOC void *nasm_realloc_log (char *file, int line, void *q, size_t size) #else void *nasm_realloc (void *q, size_t size) #endif { void *p = q ? realloc(q, size) : malloc(size); if (!p) nasm_malloc_error (ERR_FATAL | ERR_NOFILE, "out of memory"); #ifdef LOGALLOC else if (q) fprintf(logfp, "%s %d realloc(%p,%ld) returns %p\n", file, line, q, (long)size, p); else fprintf(logfp, "%s %d malloc(%ld) returns %p\n", file, line, (long)size, p); #endif return p; } #ifdef LOGALLOC void nasm_free_log (char *file, int line, void *q) #else void nasm_free (void *q) #endif { if (q) { free (q); #ifdef LOGALLOC fprintf(logfp, "%s %d free(%p)\n", file, line, q); #endif } } #ifdef LOGALLOC char *nasm_strdup_log (char *file, int line, char *s) #else char *nasm_strdup (char *s) #endif { char *p; int size = strlen(s)+1; p = malloc(size); if (!p) nasm_malloc_error (ERR_FATAL | ERR_NOFILE, "out of memory"); #ifdef LOGALLOC else fprintf(logfp, "%s %d strdup(%ld) returns %p\n", file, line, (long)size, p); #endif strcpy (p, s); return p; } #ifdef LOGALLOC char *nasm_strndup_log (char *file, int line, char *s, size_t len) #else char *nasm_strndup (char *s, size_t len) #endif { char *p; int size = len+1; p = malloc(size); if (!p) nasm_malloc_error (ERR_FATAL | ERR_NOFILE, "out of memory"); #ifdef LOGALLOC else fprintf(logfp, "%s %d strndup(%ld) returns %p\n", file, line, (long)size, p); #endif strncpy (p, s, len); p[len] = '\0'; return p; } int nasm_stricmp (char *s1, char *s2) { while (*s1 && toupper(*s1) == toupper(*s2)) s1++, s2++; if (!*s1 && !*s2) return 0; else if (toupper(*s1) < toupper(*s2)) return -1; else return 1; } int nasm_strnicmp (char *s1, char *s2, int n) { while (n > 0 && *s1 && toupper(*s1) == toupper(*s2)) s1++, s2++, n--; if ((!*s1 && !*s2) || n==0) return 0; else if (toupper(*s1) < toupper(*s2)) return -1; else return 1; } #define lib_isnumchar(c) ( isalnum(c) || (c) == '$') #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0') long readnum (char *str, int *error) { char *r = str, *q; long radix; unsigned long result, checklimit; int warn = FALSE; *error = FALSE; while (isspace(*r)) r++; /* find start of number */ q = r; while (lib_isnumchar(*q)) q++; /* find end of number */ /* * If it begins 0x, 0X or $, or ends in H, it's in hex. if it * ends in Q, it's octal. if it ends in B, it's binary. * Otherwise, it's ordinary decimal. */ if (*r=='0' && (r[1]=='x' || r[1]=='X')) radix = 16, r += 2; else if (*r=='$') radix = 16, r++; else if (q[-1]=='H' || q[-1]=='h') radix = 16 , q--; else if (q[-1]=='Q' || q[-1]=='q') radix = 8 , q--; else if (q[-1]=='B' || q[-1]=='b') radix = 2 , q--; else radix = 10; /* * If this number has been found for us by something other than * the ordinary scanners, then it might be malformed by having * nothing between the prefix and the suffix. Check this case * now. */ if (r >= q) { *error = TRUE; return 0; } /* * `checklimit' must be 2**32 / radix. We can't do that in * 32-bit arithmetic, which we're (probably) using, so we * cheat: since we know that all radices we use are even, we * can divide 2**31 by radix/2 instead. */ checklimit = 0x80000000UL / (radix>>1); result = 0; while (*r && r < q) { if (*r<'0' || (*r>'9' && *r<'A') || numvalue(*r)>=radix) { *error = TRUE; return 0; } if (result >= checklimit) warn = TRUE; result = radix * result + numvalue(*r); r++; } if (warn) nasm_malloc_error (ERR_WARNING | ERR_PASS1 | ERR_WARN_NOV, "numeric constant %s does not fit in 32 bits", str); return result; } static long next_seg; void seg_init(void) { next_seg = 0; } long seg_alloc(void) { return (next_seg += 2) - 2; } void fwriteshort (int data, FILE *fp) { fputc ((int) (data & 255), fp); fputc ((int) ((data >> 8) & 255), fp); } void fwritelong (long data, FILE *fp) { fputc ((int) (data & 255), fp); fputc ((int) ((data >> 8) & 255), fp); fputc ((int) ((data >> 16) & 255), fp); fputc ((int) ((data >> 24) & 255), fp); } void standard_extension (char *inname, char *outname, char *extension, efunc error) { char *p, *q; if (*outname) /* file name already exists, */ return; /* so do nothing */ q = inname; p = outname; while (*q) *p++ = *q++; /* copy, and find end of string */ *p = '\0'; /* terminate it */ while (p > outname && *--p != '.');/* find final period (or whatever) */ if (*p != '.') while (*p) p++; /* go back to end if none found */ if (!strcmp(p, extension)) { /* is the extension already there? */ if (*extension) error(ERR_WARNING | ERR_NOFILE, "file name already ends in `%s': " "output will be in `nasm.out'", extension); else error(ERR_WARNING | ERR_NOFILE, "file name already has no extension: " "output will be in `nasm.out'"); strcpy(outname, "nasm.out"); } else strcpy(p, extension); } #define RAA_BLKSIZE 4096 /* this many longs allocated at once */ #define RAA_LAYERSIZE 1024 /* this many _pointers_ allocated */ typedef struct RAA RAA; typedef union RAA_UNION RAA_UNION; typedef struct RAA_LEAF RAA_LEAF; typedef struct RAA_BRANCH RAA_BRANCH; struct RAA { /* * Number of layers below this one to get to the real data. 0 * means this structure is a leaf, holding RAA_BLKSIZE real * data items; 1 and above mean it's a branch, holding * RAA_LAYERSIZE pointers to the next level branch or leaf * structures. */ int layers; /* * Number of real data items spanned by one position in the * `data' array at this level. This number is 1, trivially, for * a leaf (level 0): for a level 1 branch it should be * RAA_BLKSIZE, and for a level 2 branch it's * RAA_LAYERSIZE*RAA_BLKSIZE. */ long stepsize; union RAA_UNION { struct RAA_LEAF { long data[RAA_BLKSIZE]; } l; struct RAA_BRANCH { struct RAA *data[RAA_LAYERSIZE]; } b; } u; }; #define LEAFSIZ (sizeof(RAA)-sizeof(RAA_UNION)+sizeof(RAA_LEAF)) #define BRANCHSIZ (sizeof(RAA)-sizeof(RAA_UNION)+sizeof(RAA_BRANCH)) #define LAYERSIZ(r) ( (r)->layers==0 ? RAA_BLKSIZE : RAA_LAYERSIZE ) static struct RAA *real_raa_init (int layers) { struct RAA *r; if (layers == 0) { r = nasm_malloc (LEAFSIZ); memset (r->u.l.data, 0, sizeof(r->u.l.data)); r->layers = 0; r->stepsize = 1L; } else { r = nasm_malloc (BRANCHSIZ); memset (r->u.b.data, 0, sizeof(r->u.b.data)); r->layers = layers; r->stepsize = RAA_BLKSIZE; while (--layers) r->stepsize *= RAA_LAYERSIZE; } return r; } struct RAA *raa_init (void) { return real_raa_init (0); } void raa_free (struct RAA *r) { if (r->layers == 0) nasm_free (r); else { struct RAA **p; for (p = r->u.b.data; p - r->u.b.data < RAA_LAYERSIZE; p++) if (*p) raa_free (*p); } } long raa_read (struct RAA *r, long posn) { if (posn > r->stepsize * LAYERSIZ(r)) return 0L; while (r->layers > 0) { ldiv_t l; l = ldiv (posn, r->stepsize); r = r->u.b.data[l.quot]; posn = l.rem; if (!r) /* better check this */ return 0L; } return r->u.l.data[posn]; } struct RAA *raa_write (struct RAA *r, long posn, long value) { struct RAA *result; if (posn < 0) nasm_malloc_error (ERR_PANIC, "negative position in raa_write"); while (r->stepsize * LAYERSIZ(r) < posn) { /* * Must go up a layer. */ struct RAA *s; s = nasm_malloc (BRANCHSIZ); memset (s->u.b.data, 0, sizeof(r->u.b.data)); s->layers = r->layers + 1; s->stepsize = RAA_LAYERSIZE * r->stepsize; s->u.b.data[0] = r; r = s; } result = r; while (r->layers > 0) { ldiv_t l; struct RAA **s; l = ldiv (posn, r->stepsize); s = &r->u.b.data[l.quot]; if (!*s) *s = real_raa_init (r->layers - 1); r = *s; posn = l.rem; } r->u.l.data[posn] = value; return result; } #define SAA_MAXLEN 8192 struct SAA { /* * members `end' and `elem_len' are only valid in first link in * list; `rptr' and `rpos' are used for reading */ struct SAA *next, *end, *rptr; long elem_len, length, posn, start, rpos; char *data; }; struct SAA *saa_init (long elem_len) { struct SAA *s; if (elem_len > SAA_MAXLEN) nasm_malloc_error (ERR_PANIC | ERR_NOFILE, "SAA with huge elements"); s = nasm_malloc (sizeof(struct SAA)); s->posn = s->start = 0L; s->elem_len = elem_len; s->length = SAA_MAXLEN - (SAA_MAXLEN % elem_len); s->data = nasm_malloc (s->length); s->next = NULL; s->end = s; return s; } void saa_free (struct SAA *s) { struct SAA *t; while (s) { t = s->next; nasm_free (s->data); nasm_free (s); s = t; } } void *saa_wstruct (struct SAA *s) { void *p; if (s->end->length - s->end->posn < s->elem_len) { s->end->next = nasm_malloc (sizeof(struct SAA)); s->end->next->start = s->end->start + s->end->posn; s->end = s->end->next; s->end->length = s->length; s->end->next = NULL; s->end->posn = 0L; s->end->data = nasm_malloc (s->length); } p = s->end->data + s->end->posn; s->end->posn += s->elem_len; return p; } void saa_wbytes (struct SAA *s, void *data, long len) { char *d = data; while (len > 0) { long l = s->end->length - s->end->posn; if (l > len) l = len; if (l > 0) { if (d) { memcpy (s->end->data + s->end->posn, d, l); d += l; } else memset (s->end->data + s->end->posn, 0, l); s->end->posn += l; len -= l; } if (len > 0) { s->end->next = nasm_malloc (sizeof(struct SAA)); s->end->next->start = s->end->start + s->end->posn; s->end = s->end->next; s->end->length = s->length; s->end->next = NULL; s->end->posn = 0L; s->end->data = nasm_malloc (s->length); } } } void saa_rewind (struct SAA *s) { s->rptr = s; s->rpos = 0L; } void *saa_rstruct (struct SAA *s) { void *p; if (!s->rptr) return NULL; if (s->rptr->posn - s->rpos < s->elem_len) { s->rptr = s->rptr->next; if (!s->rptr) return NULL; /* end of array */ s->rpos = 0L; } p = s->rptr->data + s->rpos; s->rpos += s->elem_len; return p; } void *saa_rbytes (struct SAA *s, long *len) { void *p; if (!s->rptr) return NULL; p = s->rptr->data + s->rpos; *len = s->rptr->posn - s->rpos; s->rptr = s->rptr->next; s->rpos = 0L; return p; } void saa_rnbytes (struct SAA *s, void *data, long len) { char *d = data; while (len > 0) { long l; if (!s->rptr) return; l = s->rptr->posn - s->rpos; if (l > len) l = len; if (l > 0) { memcpy (d, s->rptr->data + s->rpos, l); d += l; s->rpos += l; len -= l; } if (len > 0) { s->rptr = s->rptr->next; s->rpos = 0L; } } } void saa_fread (struct SAA *s, long posn, void *data, long len) { struct SAA *p; long pos; char *cdata = data; if (!s->rptr || posn > s->rptr->start + s->rpos) saa_rewind (s); while (posn >= s->rptr->start + s->rptr->posn) { s->rptr = s->rptr->next; if (!s->rptr) return; /* what else can we do?! */ } p = s->rptr; pos = posn - s->rptr->start; while (len) { long l = s->rptr->posn - pos; if (l > len) l = len; memcpy (cdata, s->rptr->data+pos, l); len -= l; cdata += l; p = p->next; if (!p) return; pos = 0L; } } void saa_fwrite (struct SAA *s, long posn, void *data, long len) { struct SAA *p; long pos; char *cdata = data; if (!s->rptr || posn > s->rptr->start + s->rpos) saa_rewind (s); while (posn >= s->rptr->start + s->rptr->posn) { s->rptr = s->rptr->next; if (!s->rptr) return; /* what else can we do?! */ } p = s->rptr; pos = posn - s->rptr->start; while (len) { long l = s->rptr->posn - pos; if (l > len) l = len; memcpy (s->rptr->data+pos, cdata, l); len -= l; cdata += l; p = p->next; if (!p) return; pos = 0L; } } void saa_fpwrite (struct SAA *s, FILE *fp) { char *data; long len; saa_rewind (s); while ( (data = saa_rbytes (s, &len)) ) fwrite (data, 1, len, fp); } /* * Register, instruction, condition-code and prefix keywords used * by the scanner. */ #include "names.c" static char *special_names[] = { "byte", "dword", "far", "long", "near", "nosplit", "qword", "short", "to", "tword", "word" }; static char *prefix_names[] = { "a16", "a32", "lock", "o16", "o32", "rep", "repe", "repne", "repnz", "repz", "times" }; /* * Standard scanner routine used by parser.c and some output * formats. It keeps a succession of temporary-storage strings in * stdscan_tempstorage, which can be cleared using stdscan_reset. */ static char **stdscan_tempstorage = NULL; static int stdscan_tempsize = 0, stdscan_templen = 0; #define STDSCAN_TEMP_DELTA 256 static void stdscan_pop(void) { nasm_free (stdscan_tempstorage[--stdscan_templen]); } void stdscan_reset(void) { while (stdscan_templen > 0) stdscan_pop(); } static char *stdscan_copy(char *p, int len) { char *text; text = nasm_malloc(len+1); strncpy (text, p, len); text[len] = '\0'; if (stdscan_templen >= stdscan_tempsize) { stdscan_tempsize += STDSCAN_TEMP_DELTA; stdscan_tempstorage = nasm_realloc(stdscan_tempstorage, stdscan_tempsize*sizeof(char *)); } stdscan_tempstorage[stdscan_templen++] = text; return text; } char *stdscan_bufptr = NULL; int stdscan (void *private_data, struct tokenval *tv) { char ourcopy[256], *r, *s; while (isspace(*stdscan_bufptr)) stdscan_bufptr++; if (!*stdscan_bufptr) return tv->t_type = 0; /* we have a token; either an id, a number or a char */ if (isidstart(*stdscan_bufptr) || (*stdscan_bufptr == '$' && isidstart(stdscan_bufptr[1]))) { /* now we've got an identifier */ int i; int is_sym = FALSE; if (*stdscan_bufptr == '$') { is_sym = TRUE; stdscan_bufptr++; } r = stdscan_bufptr++; while (isidchar(*stdscan_bufptr)) stdscan_bufptr++; tv->t_charptr = stdscan_copy(r, stdscan_bufptr - r); for (s=tv->t_charptr, r=ourcopy; *s; s++) *r++ = tolower (*s); *r = '\0'; if (is_sym) return tv->t_type = TOKEN_ID;/* bypass all other checks */ /* right, so we have an identifier sitting in temp storage. now, * is it actually a register or instruction name, or what? */ if ((tv->t_integer=bsi(ourcopy, reg_names, elements(reg_names)))>=0) { tv->t_integer += EXPR_REG_START; return tv->t_type = TOKEN_REG; } else if ((tv->t_integer=bsi(ourcopy, insn_names, elements(insn_names)))>=0) { return tv->t_type = TOKEN_INSN; } for (i=0; i<(int)elements(icn); i++) if (!strncmp(ourcopy, icn[i], strlen(icn[i]))) { char *p = ourcopy + strlen(icn[i]); tv->t_integer = ico[i]; if ((tv->t_inttwo=bsi(p, conditions, elements(conditions)))>=0) return tv->t_type = TOKEN_INSN; } if ((tv->t_integer=bsi(ourcopy, prefix_names, elements(prefix_names)))>=0) { tv->t_integer += PREFIX_ENUM_START; return tv->t_type = TOKEN_PREFIX; } if ((tv->t_integer=bsi(ourcopy, special_names, elements(special_names)))>=0) return tv->t_type = TOKEN_SPECIAL; if (!strcmp(ourcopy, "seg")) return tv->t_type = TOKEN_SEG; if (!strcmp(ourcopy, "wrt")) return tv->t_type = TOKEN_WRT; return tv->t_type = TOKEN_ID; } else if (*stdscan_bufptr == '$' && !isnumchar(stdscan_bufptr[1])) { /* * It's a $ sign with no following hex number; this must * mean it's a Here token ($), evaluating to the current * assembly location, or a Base token ($$), evaluating to * the base of the current segment. */ stdscan_bufptr++; if (*stdscan_bufptr == '$') { stdscan_bufptr++; return tv->t_type = TOKEN_BASE; } return tv->t_type = TOKEN_HERE; } else if (isnumstart(*stdscan_bufptr)) { /* now we've got a number */ int rn_error; r = stdscan_bufptr++; while (isnumchar(*stdscan_bufptr)) stdscan_bufptr++; if (*stdscan_bufptr == '.') { /* * a floating point constant */ stdscan_bufptr++; while (isnumchar(*stdscan_bufptr)) { stdscan_bufptr++; } tv->t_charptr = stdscan_copy(r, stdscan_bufptr - r); return tv->t_type = TOKEN_FLOAT; } r = stdscan_copy(r, stdscan_bufptr - r); tv->t_integer = readnum(r, &rn_error); stdscan_pop(); if (rn_error) return tv->t_type = TOKEN_ERRNUM;/* some malformation occurred */ tv->t_charptr = NULL; return tv->t_type = TOKEN_NUM; } else if (*stdscan_bufptr == '\'' || *stdscan_bufptr == '"') {/* a char constant */ char quote = *stdscan_bufptr++, *r; r = tv->t_charptr = stdscan_bufptr; while (*stdscan_bufptr && *stdscan_bufptr != quote) stdscan_bufptr++; tv->t_inttwo = stdscan_bufptr - r; /* store full version */ if (!*stdscan_bufptr) return tv->t_type = TOKEN_ERRNUM; /* unmatched quotes */ tv->t_integer = 0; r = stdscan_bufptr++; /* skip over final quote */ while (quote != *--r) { tv->t_integer = (tv->t_integer<<8) + (unsigned char) *r; } return tv->t_type = TOKEN_NUM; } else if (*stdscan_bufptr == ';') { /* a comment has happened - stay */ return tv->t_type = 0; } else if (stdscan_bufptr[0] == '>' && stdscan_bufptr[1] == '>') { stdscan_bufptr += 2; return tv->t_type = TOKEN_SHR; } else if (stdscan_bufptr[0] == '<' && stdscan_bufptr[1] == '<') { stdscan_bufptr += 2; return tv->t_type = TOKEN_SHL; } else if (stdscan_bufptr[0] == '/' && stdscan_bufptr[1] == '/') { stdscan_bufptr += 2; return tv->t_type = TOKEN_SDIV; } else if (stdscan_bufptr[0] == '%' && stdscan_bufptr[1] == '%') { stdscan_bufptr += 2; return tv->t_type = TOKEN_SMOD; } else if (stdscan_bufptr[0] == '=' && stdscan_bufptr[1] == '=') { stdscan_bufptr += 2; return tv->t_type = TOKEN_EQ; } else if (stdscan_bufptr[0] == '<' && stdscan_bufptr[1] == '>') { stdscan_bufptr += 2; return tv->t_type = TOKEN_NE; } else if (stdscan_bufptr[0] == '!' && stdscan_bufptr[1] == '=') { stdscan_bufptr += 2; return tv->t_type = TOKEN_NE; } else if (stdscan_bufptr[0] == '<' && stdscan_bufptr[1] == '=') { stdscan_bufptr += 2; return tv->t_type = TOKEN_LE; } else if (stdscan_bufptr[0] == '>' && stdscan_bufptr[1] == '=') { stdscan_bufptr += 2; return tv->t_type = TOKEN_GE; } else if (stdscan_bufptr[0] == '&' && stdscan_bufptr[1] == '&') { stdscan_bufptr += 2; return tv->t_type = TOKEN_DBL_AND; } else if (stdscan_bufptr[0] == '^' && stdscan_bufptr[1] == '^') { stdscan_bufptr += 2; return tv->t_type = TOKEN_DBL_XOR; } else if (stdscan_bufptr[0] == '|' && stdscan_bufptr[1] == '|') { stdscan_bufptr += 2; return tv->t_type = TOKEN_DBL_OR; } else /* just an ordinary char */ return tv->t_type = (unsigned char) (*stdscan_bufptr++); } /* * Return TRUE if the argument is a simple scalar. (Or a far- * absolute, which counts.) */ int is_simple (expr *vect) { while (vect->type && !vect->value) vect++; if (!vect->type) return 1; if (vect->type != EXPR_SIMPLE) return 0; do { vect++; } while (vect->type && !vect->value); if (vect->type && vect->type < EXPR_SEGBASE+SEG_ABS) return 0; return 1; } /* * Return TRUE if the argument is a simple scalar, _NOT_ a far- * absolute. */ int is_really_simple (expr *vect) { while (vect->type && !vect->value) vect++; if (!vect->type) return 1; if (vect->type != EXPR_SIMPLE) return 0; do { vect++; } while (vect->type && !vect->value); if (vect->type) return 0; return 1; } /* * Return TRUE if the argument is relocatable (i.e. a simple * scalar, plus at most one segment-base, plus possibly a WRT). */ int is_reloc (expr *vect) { while (vect->type && !vect->value) /* skip initial value-0 terms */ vect++; if (!vect->type) /* trivially return TRUE if nothing */ return 1; /* is present apart from value-0s */ if (vect->type < EXPR_SIMPLE) /* FALSE if a register is present */ return 0; if (vect->type == EXPR_SIMPLE) { /* skip over a pure number term... */ do { vect++; } while (vect->type && !vect->value); if (!vect->type) /* ...returning TRUE if that's all */ return 1; } if (vect->type == EXPR_WRT) { /* skip over a WRT term... */ do { vect++; } while (vect->type && !vect->value); if (!vect->type) /* ...returning TRUE if that's all */ return 1; } if (vect->value != 0 && vect->value != 1) return 0; /* segment base multiplier non-unity */ do { /* skip over _one_ seg-base term... */ vect++; } while (vect->type && !vect->value); if (!vect->type) /* ...returning TRUE if that's all */ return 1; return 0; /* And return FALSE if there's more */ } /* * Return TRUE if the argument contains an `unknown' part. */ int is_unknown(expr *vect) { while (vect->type && vect->type < EXPR_UNKNOWN) vect++; return (vect->type == EXPR_UNKNOWN); } /* * Return TRUE if the argument contains nothing but an `unknown' * part. */ int is_just_unknown(expr *vect) { while (vect->type && !vect->value) vect++; return (vect->type == EXPR_UNKNOWN); } /* * Return the scalar part of a relocatable vector. (Including * simple scalar vectors - those qualify as relocatable.) */ long reloc_value (expr *vect) { while (vect->type && !vect->value) vect++; if (!vect->type) return 0; if (vect->type == EXPR_SIMPLE) return vect->value; else return 0; } /* * Return the segment number of a relocatable vector, or NO_SEG for * simple scalars. */ long reloc_seg (expr *vect) { while (vect->type && (vect->type == EXPR_WRT || !vect->value)) vect++; if (vect->type == EXPR_SIMPLE) { do { vect++; } while (vect->type && (vect->type == EXPR_WRT || !vect->value)); } if (!vect->type) return NO_SEG; else return vect->type - EXPR_SEGBASE; } /* * Return the WRT segment number of a relocatable vector, or NO_SEG * if no WRT part is present. */ long reloc_wrt (expr *vect) { while (vect->type && vect->type < EXPR_WRT) vect++; if (vect->type == EXPR_WRT) { return vect->value; } else return NO_SEG; } /* * Binary search. */ int bsi (char *string, char **array, int size) { int i = -1, j = size; /* always, i < index < j */ while (j-i >= 2) { int k = (i+j)/2; int l = strcmp(string, array[k]); if (l<0) /* it's in the first half */ j = k; else if (l>0) /* it's in the second half */ i = k; else /* we've got it :) */ return k; } return -1; /* we haven't got it :( */ }