/* * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. * * @APPLE_LICENSE_HEADER_START@ * * Portions Copyright (c) 1999 Apple Computer, Inc. All Rights * Reserved. This file contains Original Code and/or Modifications of * Original Code as defined in and that are subject to the Apple Public * Source License Version 1.1 (the "License"). You may not use this file * except in compliance with the License. Please obtain a copy of the * License at http://www.apple.com/publicsource and read it before using * this file. * * The Original Code and all software distributed under the License are * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE OR NON- INFRINGEMENT. Please see the * License for the specific language governing rights and limitations * under the License. * * @APPLE_LICENSE_HEADER_END@ */ /* float.c floating-point constant support for the Netwide Assembler * * The Netwide Assembler is copyright (C) 1996 Simon Tatham and * Julian Hall. All rights reserved. The software is * redistributable under the licence given in the file "Licence" * distributed in the NASM archive. * * initial version 13/ix/96 by Simon Tatham */ #include #include #include #include "nasm.h" #define TRUE 1 #define FALSE 0 #define MANT_WORDS 6 /* 64 bits + 32 for accuracy == 96 */ #define MANT_DIGITS 28 /* 29 digits don't fit in 96 bits */ /* * guaranteed top bit of from is set * => we only have to worry about _one_ bit shift to the left */ static int multiply(unsigned short *to, unsigned short *from) { unsigned long temp[MANT_WORDS*2]; int i, j; for (i=0; i> 16; temp[i+j+1] += n & 0xFFFF; } for (i=MANT_WORDS*2; --i ;) { temp[i-1] += temp[i] >> 16; temp[i] &= 0xFFFF; } if (temp[0] & 0x8000) { for (i=0; i= '0' && *string <= '9') { if (*string == '0' && !started) { if (seendot) tenpwr--; } else { started = TRUE; if (p < digits+sizeof(digits)) *p++ = *string - '0'; if (!seendot) tenpwr++; } } else { error (ERR_NONFATAL, "floating-point constant: `%c' is invalid character", *string); return; } string++; } if (*string) { string++; /* eat the E */ tenpwr += atoi(string); } /* * At this point, the memory interval [digits,p) contains a * series of decimal digits zzzzzzz such that our number X * satisfies * * X = 0.zzzzzzz * 10^tenpwr */ bit = 0x8000; for (m=mant; m q && !p[-1]) p--; if (p <= q) break; for (r = p; r-- > q ;) { int i; i = 2 * *r + carry; if (i >= 10) carry = 1, i -= 10; else carry = 0; *r = i; } if (carry) *m |= bit, started = TRUE; if (started) { if (bit == 1) bit = 0x8000, m++; else bit >>= 1; } else twopwr--; } twopwr += tenpwr; /* * At this point the `mant' array contains the first six * fractional places of a base-2^16 real number, which when * multiplied by 2^twopwr and 5^tenpwr gives X. So now we * really do multiply by 5^tenpwr. */ if (tenpwr < 0) { for (m=mult; m 0) { mult[0] = 0xA000; for (m=mult+1; m>= 1; } /* * Conversion is done. The elements of `mant' contain the first * fractional places of a base-2^16 real number in [0.5,1) * which we can multiply by 2^twopwr to get X. Or, of course, * it contains zero. */ *exponent = twopwr; } /* * Shift a mantissa to the right by i (i < 16) bits. */ static void shr(unsigned short *mant, int i) { unsigned short n = 0, m; int j; for (j=0; j> i) | n; n = m; } } /* * Round a mantissa off after i words. */ static int round(unsigned short *mant, int i) { if (mant[i] & 0x8000) { do { ++mant[--i]; mant[i] &= 0xFFFF; } while (i > 0 && !mant[i]); return !i && !mant[i]; } return 0; } #define put(a,b) ( (*(a)=(b)), ((a)[1]=(b)>>8) ) static int to_double(char *str, long sign, unsigned char *result, efunc error) { unsigned short mant[MANT_WORDS]; long exponent; sign = (sign < 0 ? 0x8000L : 0L); flconvert (str, mant, &exponent, error); if (mant[0] & 0x8000) { /* * Non-zero. */ exponent--; if (exponent >= -1022 && exponent <= 1024) { /* * Normalised. */ exponent += 1023; shr(mant, 11); round(mant, 4); if (mant[0] & 0x20) /* did we scale up by one? */ shr(mant, 1), exponent++; mant[0] &= 0xF; /* remove leading one */ put(result+6,(exponent << 4) | mant[0] | sign); put(result+4,mant[1]); put(result+2,mant[2]); put(result+0,mant[3]); } else if (exponent < -1022 && exponent >= -1074) { /* * Denormal. */ int shift = -(exponent+1011); int sh = shift % 16, wds = shift / 16; shr(mant, sh); if (round(mant, 4-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) { shr(mant, 1); if (sh==0) mant[0] |= 0x8000; exponent++; } put(result+6,(wds == 0 ? mant[0] : 0) | sign); put(result+4,(wds <= 1 ? mant[1-wds] : 0)); put(result+2,(wds <= 2 ? mant[2-wds] : 0)); put(result+0,(wds <= 3 ? mant[3-wds] : 0)); } else { if (exponent > 0) { error(ERR_NONFATAL, "overflow in floating-point constant"); return 0; } else memset (result, 0, 8); } } else { /* * Zero. */ memset (result, 0, 8); } return 1; /* success */ } static int to_float(char *str, long sign, unsigned char *result, efunc error) { unsigned short mant[MANT_WORDS]; long exponent; sign = (sign < 0 ? 0x8000L : 0L); flconvert (str, mant, &exponent, error); if (mant[0] & 0x8000) { /* * Non-zero. */ exponent--; if (exponent >= -126 && exponent <= 128) { /* * Normalised. */ exponent += 127; shr(mant, 8); round(mant, 2); if (mant[0] & 0x100) /* did we scale up by one? */ shr(mant, 1), exponent++; mant[0] &= 0x7F; /* remove leading one */ put(result+2,(exponent << 7) | mant[0] | sign); put(result+0,mant[1]); } else if (exponent < -126 && exponent >= -149) { /* * Denormal. */ int shift = -(exponent+118); int sh = shift % 16, wds = shift / 16; shr(mant, sh); if (round(mant, 2-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) { shr(mant, 1); if (sh==0) mant[0] |= 0x8000; exponent++; } put(result+2,(wds == 0 ? mant[0] : 0) | sign); put(result+0,(wds <= 1 ? mant[1-wds] : 0)); } else { if (exponent > 0) { error(ERR_NONFATAL, "overflow in floating-point constant"); return 0; } else memset (result, 0, 4); } } else { memset (result, 0, 4); } return 1; } static int to_ldoub(char *str, long sign, unsigned char *result, efunc error) { unsigned short mant[MANT_WORDS]; long exponent; sign = (sign < 0 ? 0x8000L : 0L); flconvert (str, mant, &exponent, error); if (mant[0] & 0x8000) { /* * Non-zero. */ exponent--; if (exponent >= -16383 && exponent <= 16384) { /* * Normalised. */ exponent += 16383; if (round(mant, 4)) /* did we scale up by one? */ shr(mant, 1), mant[0] |= 0x8000, exponent++; put(result+8,exponent | sign); put(result+6,mant[0]); put(result+4,mant[1]); put(result+2,mant[2]); put(result+0,mant[3]); } else if (exponent < -16383 && exponent >= -16446) { /* * Denormal. */ int shift = -(exponent+16383); int sh = shift % 16, wds = shift / 16; shr(mant, sh); if (round(mant, 4-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) { shr(mant, 1); if (sh==0) mant[0] |= 0x8000; exponent++; } put(result+8,sign); put(result+6,(wds == 0 ? mant[0] : 0)); put(result+4,(wds <= 1 ? mant[1-wds] : 0)); put(result+2,(wds <= 2 ? mant[2-wds] : 0)); put(result+0,(wds <= 3 ? mant[3-wds] : 0)); } else { if (exponent > 0) { error(ERR_NONFATAL, "overflow in floating-point constant"); return 0; } else memset (result, 0, 10); } } else { /* * Zero. */ memset (result, 0, 10); } return 1; } int float_const (char *number, long sign, unsigned char *result, int bytes, efunc error) { if (bytes == 4) return to_float (number, sign, result, error); else if (bytes == 8) return to_double (number, sign, result, error); else if (bytes == 10) return to_ldoub (number, sign, result, error); else { error(ERR_PANIC, "strange value %d passed to float_const", bytes); return 0; } }